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As usual, we introduce the stream iimction.Y by putting u = aY / ay and v =- aY /a~ 
and eliminate the pressure p from the first two equations of (1.1). This yields the fol- 
lowing quasilinear, fourth order equation i%r 

L(Y)EUnl x+-t%) ( a4Y 
+ 2az = +4as(&$j -s a29 ayz > 

= H(Y) (1.2) 

where H (Y)is a nonlinear third order operator and 

01 = lo (f + 2aV’), a2 = ‘lo (f + 4ar’f’ - 2W), (1s = 2tlo”J 

E= au/au+ au/ax= avy/aTg--awlai, &I = 2au / ax = 2sYl alay 

It can be shown by usual methods, that the presence of the real characteristics of (1.2) 
on the zy -plane depends on the form of the function f (I). When the inequality f+21/‘> 0 
holds, then the real characteristics are absent. In particular, they are absent in the case 

of the normal type hydrodynamics when 1’ = 0, and for any model with increasing visco- 

sity , when f’ > 0. 
If, on the other hand 

f + w < 0 (1.3) 

then four families of real characteristics y = ‘J (I) exist, and are given by 

1,2,3,4 = k, f v/k,a+ k, = 
4eeli*T v/- /“--21/f’ 

2 (f i- 2@1’) 
(1.4) 

Thus, when (1.3) holds, (1.2) becomes hyperbolic. Condition (1.3) implies that the 
viscosity should decrease with increasing rate of strain and, that it should do so suffi- 

ciently fast to ensure that df I dl/F< - f /.1/E It can easily be seen that the inequality 
(1.3) corresponds to a segment on the curve VT = F (v/Is where J = 4tloPI is the 
second invariant of the viscous stress tensor, on which the stresses decrease with increas- 
ing rate of strain and, that the region of hyperbolicity of (1.2) corresponds to this seg- 
ment. An interesting fact emerges, namely, thay in the flow of a Newtonian fluid whose 
viscosity is temperature dependent, the instability is indicated by the appearance of a 

similar decreasing segment on the curve connecting, say, the friction on the wall with 
its rate of flow [l]. When this happens, then the system of equations does not assume 
real characteristics under any conditions. 

Analogous results are obtained in a number of other problems, e. g. when considering 
a fully developed flow in a pipe, we obtain the following quasilinear. second order equa- 
tion for the longitudinal velocity 

N(u)= [f+2,*(g)s] G+4j’$gas+ 

+ [i+21’(32]+-9, p=-&cco”st (1.5) 

which also becomes hyperbolic when the condition (1.3) holds. 
Investigation of real flows such as Couette or Poiseville flows indicates that Eqs. (1.2) 

or (1.5) indeed have solutions satisfying the appropriate boundary conditions, provided 
that the inequality (1.3) holds for a part (or sometimes for the whole) of the investigated 
region of flow. 

It can naturally be assumed that the behavior of the fluid is Newtonian, when the rates 
of strain are small. From this it follows that the regions in which (1.3) holds, can only 
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appear in the flow when the pressure gradients are sufficiently large (flows in pipes) or, 
when the boundaries move with high velocities (Couette flows). We can introduce the 
concept of the critical shear rate D, at which J reaches its first maximum and f $ 2ff’ 

changes its sign from plus to minus, and thus obtain a class of media with the critical 
shear rate. 

Thus a possibility exists,in principle,that a “hyperbolic” mode of nonlinear viscous flow 
can be assumed by the media with the critical shear rate. Under certain boundary con- 
ditions the inequality v/r> De will hold for these media in some parts of the flow. It 
should however be stressed,that at present we are not discussing the existence of real 
flows. but the implications which can be derived from the initial system of equations. 

We can further consider the corresponding unsteady problems. We shall of course find, 
that in this case (1.2) and (1.5) are replaced by 

paA’f’/ at = L (‘8’) - H (‘f’), pau / at = qoN (u) + P (1.6) 

where the right-hand sides are the operators which change their character when j + 2Ij’ 
passes through zero. 

We note that equations analogous to (1.5) are also encountered in other problems, e. g. 
in the electrodynamics of the media with nonuniform conductivity @ and 31 and, that 
the existence of an inequality equivalent to (1.3) has been confirmed there without a 
doubt. 

2, We shall now consider the flow of an elastoviscous fluid with constant properties, 
e.g. an unsteady flow of such a fluid in a plane channel 0 < Y < 6 with impermeable 
walls, assuming that all parameters depend on the time t and the transverse coordinate 

Y. For simplicity, we sha_ll use the Oldroyd model with two constants 

T+j = - Ps, + Trjl ?ij + A?u’ = 2qa~, *ti ?,j’ I at f “k’ij, k - Vi k*kj - Vj YTi, . 

assuming a plane state of stress. Then the velocity and the stress tensor components 
will be given by 

Second equation of (2.1) and the first equation of (2.2) can be used to obtain the trans- 
verse distribution of pressure and the magnitude T%% in terms of known n, Q, and xyy. 
First equation of (2.1) and third equation of (2.2) define u and, after Q,, has been 
obtained from the second equation of (2.2), also T=Y . 

We shall asume that at the initial instant ‘F,,~ - v,, = co&; then a continuous solu- 

tion of the second equation of (2.2) will have the form ‘cvr, = x0 erp (-t / A), (2.1) and 
the last equation of (2.2) will yield 

(2.3) 

Let us now suppose that Q (t) is given and that u satisfies 

u (0, Y) = 110 (Y), au (4 Y) / at I 14 = u, (Y), u (t, 0) = u (t, 6) = 0 (2.4) 
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Then the solution Y (L, y) can be written as 
M 

u (4 Y) = uk (f) sin akcJ, 
kn =- 

a& 6 
k==l 

the functions uh (1) will satisfy 

i 
uk* + T U; + $ (q/-A + ~,a”‘~) akQk = 4 [i -I- (- f)“-‘1 Q (2.5) 

Assuming that ‘co # 0 (the case ?. = 0 has been studied by various authors and the 

solution obtained in terms of elementary functions) and using the initial conditions (2.4) 

for UR (t) , we obtain the following Formulas: 

+ 
nr,(o) ’ 

2 1 IJvk (‘k tt)) y,k (‘k @‘)) - yyk @k tt)) Jvk (‘k (t’)), Q (1’) dl’ 
1 

(2.6) 

- *k to)\ (I,, (“k tt)) Kvk (‘k (“)) 
; 

- Kvk (Sk lt)) ‘v, (“k (t’)), Q (f) dr’ 
1 (2.7) 

‘A - ( 
expr (ro < 0) 

where the constants A,, Bk and c,, D, are given by the following systems of linear equa- 
tiOnS Jvk (‘;k to)) Ak + Yak (‘k (0)) Bk = Ek 

J,,' trk (0)) Ak + yyk’ trk (0)) B, = - 
E, + 2hF, 

rk (*I 

Ivk ts& (O)) c, + Kvk (‘k (0)) D, = E, 

Ivk’ &to)) ck + Kvk’ (“a (0)) Dk = - 
E, + 2Apk 

d 

k 
(0) 

when, vo >'O 

(2.8) 

when r. < 0 
(2.9) 

The quantities E, and Fk appearing in the right-hand sides of (2.8) and (2.9) repre- 
sent the Fourier coefficients of the functions u. (y) and u, (y). The determinants of the 

systems (2.8) and (2.9) are, obviously, not equal to zero. 
Returning to Eq. (2.3) we easily see that it is hyperbolic (just as in the case 7, = 0) 

when the inequality lo exp (-t / A) + q / k > 0 holds. Equation (2.3) is hyperbolic 
for all values of t, provided that r. > - q / A. Otherwise, when the inequality ‘co <-in Ln 
holds, then (2.3) belongs to the mixed type and the time intervals (0, t.) and (t,, oo) 
where t, = - 3cln (-_rl / 5so) corresponds to elliptic and hyperbolic regions of the equa- 
tion. From the above we can easily infer that a formal solution of the problem (2.3) and 
(2.4) can always be obtained irrespective of the type of (2.3), but when (2.3) is of the 
mixed type, then there is no physical counterpart to the region of ellipticity. 

3. Adamar type of examples can easily be constructed for (2.3) in its given form and 
for the linearized equations (1.6). These examples show that, when T, < - q / A in(2.3) 
or, when the operator in the right-hand side of (1.6) is hyperbolic, then the initial value 
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problems for these equations are stated incorrectly or, in other words, with the given ini- 
tial conditions these equations are nonevolutionary. 

So. the general conclusion which follows is, that the hydrodynamic equations of a non- 
Newtonian fluid may become nonevolutionary, the latter fact depending on the conditions 
called for by the particular rheological model (similar conclusion, though based on dif- 
ferent assumptions, were obtained in [S], where the propagation of small perturbations in 

an elastic medium with finite deformations was investigated). 
The lack of evolutionarity can only be detected in nonsteady flows ; we see however 

from Section 1, that the investigation of steady flows furnishes some reasons for it [6]. 
The lack of evolutionarity of equations, becoming manifest under certain conditions 

means that under these conditions an instantaneous growth of small perturbations takes 

place. In the real systems, instability may develop only at some finite rate and the per- 
turbation amplitudes cannot increase without bounds. The physical mechanism present, 
always insure that the above restrictions hold. Therefore the rheological models genera- 
ting nonevolutionary equations should be improved by introducing the terms based on 

well known theories [4], which would ensure that the initial value problem is stated cor- 
rectly. This, of course, does not eliminate the possibility that the improvement of the 
model leads to noticeable alteration of equations even within the “region of evolution- 

arity”. 
The supposition that the general principles of constructing the models of continuous 

media should include the necessary condition of the evolutionarity of equations, seems 

therefore feasible. 

The authors thank A. G, Kulikovskii for very useful discussions concerning the problems 
encountered in this work, and R. S. Rivlin for drawing their attention to the work [5]. 
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